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A harmonic oscillator perturbed by the potential 
Ax2/ (1 + gx2) 
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India 

Received 16 July 1980 

Abstract. The eigenvalues of the Hamiltonian H = -d2/dxZ+x2+AxZ/(1 +gx2), with A 
and g as parameters, are studied. We present a simple numerical procedure where the input 
data are known exactly and the requirements on the computer memory are not stringent. 
The results agree very well with the available calculations reported earlier. 

The solution of the eigenvalue problem 

H$ = E*, (1) 
where H = -d2/dx2+x2+Ax2/(1 + gx’), has recently attracted attention due to its 
applications in a variety of problems (see Mitra (1978 and references therein), Kaushal 
(1979)). Mitra (1978) obtained the first three eigenvalues of (1) numerically. Choosing 
as the basis the well known solutions of 

H04,z = En4m ( 2 )  

with Ho = -d2/dx2 + x2, he constructed the explicit matrix representation of H. By 
actually diagonalising a finite-dimensional matrix obtained by truncating the infinite- 
dimensional matrix H, Mitra was able to obtain the first three eigenenergies for a set of 
values of the parameters A and g. His calculation becomes involved on two counts. 
Firstly, he had to evaluate the matrix elements of (1 + gx2)-’, which can best be done by 
using a recurrence relation. However, none of the non-zero elements can be evaluated 
in a closed form. Secondly, in his case, one needs to store the entire matrix in the 
computer memory. This puts a severe restriction on the dimensionality of the ‘approxi- 
mate’ representation of H, 

We observe that with the same basis {&} the matrix corresponding to (1 + gx2) H 
has a simple structure. Non-zero elements occur only along three diagonals and these 
matrix elements are known exactly. Therefore, instead of solving (1) one may solve 

(3) 
It may be noticed that (1 + gx’), being positive definite, is invertible and hence equation 
(1) is equivalent to equation (3). Further, equation (3) (like equation (1)) remains 
invariant under parity operation, hence odd and even parity solutions form invariant 
subspaces. These can be treated independently. In each (even or odd) subspace, the 
relevant matrices become tridiagonal. The eigenvalue problem reduces to finding the 
zeros of a tridiagonal determinant. The roots can be accurately determined, the process 

(1 + gx2)H4 = E ( 1 +  gx2)$. 
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being facilitated by the fact that the principal minors of det((1 + g x 2 ) H - E ( 1  + g x 2 ) }  
form a Sturm sequence (see, for example, Hammarling (1970)). The following 
inequality, which can be easily established, provides the required lower and upper 
bounds on the n th energy level: 

Ho < H < H o + H o / ( l +  gH0). (4) 
Starting with even parity solutions of equation ( 2 ) ,  we generate the appropriate 10 x 10 
matrices and then compute the first two roots correct to five decimal places. The 
dimensionality is increased by ten and the calculation repeated until an agreement to 
five decimal places is obtained between successive computations. The same procedure 
is repeated for the odd parity solutions. We thus obtain the first four eigenenergies. The 
advantage of the present method is that all the input data are known exactly. Secondly, 
many matrix elements are identically zero, and the procedure for finding the roots does 
not require the zero elements to be stored in the computer memory. Thus, for an 
approximate calculation with iv X N matrices, the number of elements to be stored is 
only (2N + 1). The results are given in table 1. The first three levels can be compared 
with the results of Mitra. The agreement is very good. 

Table 1. The numerical results for the first four energy levels of a harmonic oscillator 
perturbed by the potential Ax2/(1 + g x 2 )  are presented for typical values of the parameters A 
and g. 

10 100 

0.1 1.043 174 
3.120 089 
5,181 112 
7.231 014 

1.0 1.024 112 
3.051 498 
5,058 980 
7.064 899 

10 1.005 948 
3,008 817 
5,008 291 
7.009 050 

100 1.000855 
3.000 989 
5.000 936 
7,000 999 

1.380 533 
4.079 900 
6.667 938 
9.166 578 
1.232 353 
3,507 397 
5.689 803 
7.648 212 
1.059 298 
3.088 091 
5.082 864 
7.090 384 
1.008 465 
3.009 840 
5,009 317 
7.009 849 

3.250 264 
9.619 087 

15.729 379 
21.591 056 

2,782 331 
7.417 534 

10.701 033 
13.388 354 

1.580 028 
3.879 039 
5,832 771 
7.903 174 
1.084 138 
3,098 330 
5.092 807 
7.098 468 

9.976 199 
29.781 266 
49.292 816 
68,513 244 

9.359 432 
26,706 007 
41.441 139 
53,839 119 

5.793 965 
11.572 215 
13.628 777 
15.988 477 

1,836 461 
3.983 112 
5.928 395 
7.984 464 

The author is grateful to Dr R Subramanian for useful discussions and comments. 
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