A harmonic oscillator perturbed by the potential $\lambda x^{2} /\left(1+\mathrm{gx}{ }^{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14377
(http://iopscience.iop.org/0305-4470/14/2/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:40

Please note that terms and conditions apply.

A harmonic oscillator perturbed by the potential $\lambda x^{2} /\left(1+g x^{2}\right)$

K V Bhagwat
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India

Received 16 July 1980

Abstract

The eigenvalues of the Hamiltonian $H=-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$, with λ and g as parameters, are studied. We present a simple numerical procedure where the input data are known exactly and the requirements on the computer memory are not stringent. The results agree very well with the available calculations reported earlier.

The solution of the eigenvalue problem

$$
\begin{equation*}
\boldsymbol{H} \psi=E \psi \tag{1}
\end{equation*}
$$

where $\boldsymbol{H}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$, has recently attracted attention due to its applications in a variety of problems (see Mitra (1978 and references therein), Kaushal (1979)). Mitra (1978) obtained the first three eigenvalues of (1) numerically. Choosing as the basis the well known solutions of

$$
\begin{equation*}
\boldsymbol{H}_{0} \phi_{n}=E_{n} \phi_{n}, \tag{2}
\end{equation*}
$$

with $\boldsymbol{H}_{0}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}$, he constructed the explicit matrix representation of \boldsymbol{H}. By actually diagonalising a finite-dimensional matrix obtained by truncating the infinitedimensional matrix \boldsymbol{H}, Mitra was able to obtain the first three eigenenergies for a set of values of the parameters λ and g. His calculation becomes involved on two counts. Firstly, he had to evaluate the matrix elements of $\left(1+g x^{2}\right)^{-1}$, which can best be done by using a recurrence relation. However, none of the non-zero elements can be evaluated in a closed form. Secondly, in his case, one needs to store the entire matrix in the computer memory. This puts a severe restriction on the dimensionality of the 'approximate' representation of \boldsymbol{H}.

We observe that with the same basis $\left\{\phi_{n}\right\}$ the matrix corresponding to $\left(1+g x^{2}\right) H$ has a simple structure. Non-zero elements occur only along three diagonals and these matrix elements are known exactly. Therefore, instead of solving (1) one may solve

$$
\begin{equation*}
\left(1+g x^{2}\right) \boldsymbol{H} \psi=E\left(1+g x^{2}\right) \psi . \tag{3}
\end{equation*}
$$

It may be noticed that $\left(1+g x^{2}\right)$, being positive definite, is invertibie and hence equation (1) is equivalent to equation (3). Further, equation (3) (like equation (1)) remains invariant under parity operation, hence odd and even parity solutions form invariant subspaces. These can be treated independently. In each (even or odd) subspace, the relevant matrices become tridiagonal. The eigenvalue problem reduces to finding the zeros of a tridiagonal determinant. The roots can be accurately determined, the process
being facilitated by the fact that the principal minors of $\operatorname{det}\left\{\left(1+g x^{2}\right) \boldsymbol{H}-E\left(1+g x^{2}\right)\right\}$ form a Sturm sequence (see, for example, Hammarling (1970)). The following inequality, which can be easily established, provides the required lower and upper bounds on the nth energy level:

$$
\begin{equation*}
\boldsymbol{H}_{0}<\boldsymbol{H}<\boldsymbol{H}_{0}+\boldsymbol{H}_{0} /\left(1+g \boldsymbol{H}_{0}\right) . \tag{4}
\end{equation*}
$$

Starting with even parity solutions of equation (2), we generate the appropriate 10×10 matrices and then compute the first two roots correct to five decimal places. The dimensionality is increased by ten and the calculation repeated until an agreement to five decimal places is obtained between successive computations. The same procedure is repeated for the odd parity solutions. We thus obtain the first four eigenenergies. The advantage of the present method is that all the input data are known exactly. Secondly, many matrix elements are identically zero, and the procedure for finding the roots does not require the zero elements to be stored in the computer memory. Thus, for an approximate calculation with $N \times N$ matrices, the number of elements to be stored is only $(2 N+1)$. The results are given in table 1 . The first three levels can be compared with the results of Mitra. The agreement is very good.

Table 1. The numerical results for the first four energy levels of a harmonic osciliator perturbed by the potential $\lambda x^{2} /\left(1+g x^{2}\right)$ are presented for typical values of the parameters λ and g.

	$0 \cdot 1$	$1 \cdot 0$	10	100
$0 \cdot 1$	1.043174	$1 \cdot 380533$	3.250264	9.976199
	3.120 089	4.079900	$9 \cdot 619087$	29.781266
	$5 \cdot 181.112$	6.667938	15.729379	49.292816
	7.231014	9.166578	21.591056	68.513244
$1 \cdot 0$	1.024112	$1 \cdot 232353$	2.782331	9.359432
	$3 \cdot 051498$	3.507397	7.417534	26.706007
	5.058980	5.689803	10.701033	41.441139
	7.064899	7.648212	13.388354	53.839119
10	1.005948	1.059298	1.580028	5.793965
	$3 \cdot 008817$	3.088091	3.879039	11.572215
	$5 \cdot 008291$	$5 \cdot 082864$	5.832771	13.628777
	7.009050	7.090384	7.903174	15.988477
100	1.000855	1.008465	1.084138	1.836461
	$3 \cdot 000989$	3.009840	3.098330	3.983112
	$5 \cdot 000936$	5.009317	5.092807	5.928395
	$7 \cdot 000999$	7.009849	$7 \cdot 098468$	7.984464

The author is grateful to Dr R Subramanian for useful discussions and comments.

References

